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SUMMARY 

The bifurcation phenomenon whereby multiple-vortex secondary flow occurs in place of the normal two- 
vortex flow in laminar flow in curved ducts has previously been studied numerically by several researchers. 
However, the various results have been conflicting on many points. The present paper describes a set of 
numerical experiments conducted to study the effect of numerical accuracy on the solution. The results show 
that the transition from two- to four-vortex structure depends strongly on the differencing scheme and to a 
lesser extent on  the grid size. The study also shows that as the Reynolds number of the flow increases, a two- 
vortex structure is re-established via a path which involves strongly asymmetric secondary flow patterns. 
These results are in agreement, a t  least qualitatively, with recent experimental theoretical and numerical 
results. 
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1. INTRODUCTION 

The secondary flow in curved ducts normally consists of two counter-rotating symmetric vortices. 
However, above a certain critical Dean number (of about loo), one or more pairs of additional 
vortices may be formed near the outer wall of the curved duct. This phenomenon was first 
observed in the numerical calculations of Akiyama’ and the first experimental proof was 
provided by Joseph et a1.’ Since then, there have been a number of numerical studies of the flow 
field.2-’2 In spite of these and other studies, the qualitative and quantitative nature of the 
phenomenon are yet to be understood fully, prompting some to classify this among the 
unanswered questions in fluid  mechanic^.'^ The main reason for this is the lack of consensus 
among the various numerical results as explained below. 

The bifurcation phenomenon is sometimes attributed5. to centrifugal instability. StuartI4 
discusses several types of centrifugal instability; one of these is that which would occur in a two- 
dimensional curved channel between which fluid flows under the action of a pressure gradient. 
Dean” studied this case theoretically and concluded that the instability would occur at a Dean 
number ( R e ( d / D ) ” ’ )  of 25.5. This perhaps is too small for it to be the ‘cause’ of the bifurcation, 
which has so far been reported only for Dean numbers greater than about 100. The more serious 
concern is that the results of numerical studies are not consistent on many points. The critical 
Dean number at which a four-vortex secondary flow first appears has been reported to be about 
105 by Joseph et aL2, 202 by Cheng et aL5, 143 by Ghia and Sokhey6 and 125 by Ghia et al.” 
However, experimental put this transition to be at a Dean number of about 100, which 
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is consistent with the more recent numerical calculations of Ma~l iyah ,~  Dennis and Ng8 and 
Nandakumar and Masliyahg in ducts of various cross-sections. However, Hille et al." found 
experimentally that the four-vortex structure was present only for Dean numbers between 150 
and 300. This is consistent qualitatively with the numerical results of Cheng et aL5 who obtained 
the four-cell structure for Dean numbers between 202 and 520, but is in conflict with the results of 
Ghia et al." who carried out their calculations up to a Dean number of 900 and found that the 
four-cell structure persisted. 

Another issue under debate is the stability of the multiple-vortex solution. WinterslZ obtained, 
by solving an extended set of Navier-Stokes equations, not only two- and four-cell structures but 
also asymmetric solutions at the same axial pressure gradient in fully developed flow in a coiled 
tube of square cross-section. He analysed the stability of these solutions and concluded that all 
multiple solutions except the two-cell structure are unstable. A similar conclusion has been 
reported by Goering et who used perturbation analysis. (Yang and Keller" also obtained 
multiple-vortex solutions (including an eight-vortex system) in a tube of circular cross-section, 
but they imposed a symmetry boundary condition along the horizontal axis of the tube and, as 
will be seen later, this may limit the applicability of their results.) Of all the previous studies, only 
the experimental measurements of Hille et al.' show an asymmetric solution, while Winters12 
was the only one to obtain a weakly asymmetric solution numerically. 

Thus several questions about the nature of the flow remain unanswered (as pointed out earlier 
by Goering et aLi3): (i) Is there a critical Dean number at which the transition from two- to four- 
cell structure occurs? (ii) What happens at high Dean numbers: does the four-cell structure persist 
or is a two-cell structure re-established? (iii) If a two-cell structure is re-established, how does the 
transition from four- to two-cell structure take place? Does it involve asymmetric solutions? To 
these questions on the nature of the flow can be added another on the nature of solution method. 
(iv) Why is there so much discrepancy among the various numerical results? How sensitive is the 
solution to the accuracy of the numerical scheme? 

The purpose of the work described in the present paper was to attempt to answer these 
questions by conducting carefully controlled 'numerical' experiments designed specifically to 
address these questions. These are described in the next section. The results of these experiments 
are given in Section 3 and the main conclusions from the study are discussed in Section 4. 

2. SET-UP OF NUMERICAL EXPERIMENTS 

In these experiments we wish to investigate (a) the existence of a critical Dean number for the 
appearance of a four-vortex secondary flow structure in curved tubes, (b) the nature of the flow at 
high Dean numbers, including the possibility of asymmetric solutions, and (c) the sensitivity of the 
solution to numerical accuracy, specifically to the grid size and (d) to the discretization scheme. 

2.1. Critical Dean number 

The existence of a critical Dean number is investigated by calculating the critical Reynolds 
number at which the transition occurs in curved ducts of three different diameter ratios: (i) a 
coiled tube of coil-to-duct diameter ratio of 50, (ii) a U-bend of bend-to-duct diameter ratio of 10 
and (iii)a U-bend of diameter ratio of 20. For ease in generating the grid for numerical 
calculations using the HARWELL-FLOW3D computer program (see Section 2.5), the duct is 
taken to be of square cross-section. It is noted in passing that the coil geometry corresponds to 
one of the cases investigated numerically (using finite element methods) by Winters" and that the 
flow through the two bends has been investigated experimentally by Ohba and co-workers.' * *  '' 
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2.2. Nature offlow at high Dean numbers 

This is investigated by carrying out the calculations up to a high Reynolds number in each 
duct. In view of the possibility of asymmetric solutions, the flow through the full duct is simulated. 
The stability of any asymmetric solutions is studied by starting from various initial solutions. The 
effect on an asymmetric solution of imposing a symmetry plane at the midplane of the duct 
(thereby simulating the flow through only half the duct) is also studied. 

2.3. Grid dependence of the solution 

The grid dependence of the solution is investigated by calculating the flow structure in the 
coiled tube on three grids: a 20 x 20 grid, a 30 x 30 grid and a 40 x 40 grid. In view of the excessive 
computational time required for three-dimensional flows, only two grids, namely a 32 x 20 x 20 
grid and a 38 x 30 x 30 grid, for the U-bend of diameter ratio of 20 and only a 32 x 20 x 20 grid for 
the other U-bend are used in the calculations. A numerical grid generation package associated 
with the FLOW3D code was used to generate all the grids. 

2.4. Sensitivity of solution to differencing scheme 

The effect of the discretization scheme is studied by calculating the flow field using three 
differencing schemes: the hybrid differencing scheme, the higher-order upwinding (HUW) differ- 
encing scheme and the QUICK differencing scheme based on quadratic upstream interpolation. 
These schemes are briefly described below with reference to discretization of the advection term 

The hybrid differencing scheme is based on a combination of the second-order-accurate central 
differencing scheme and the first-order-accurate upwind differencing scheme. For a mesh 
Reynolds number, defined as uAx/v, between - 2 and 2 the central differencing scheme is used: 

ua4/ax.  

Otherwise, an upwind differencing scheme is used: 

The use of the less accurate upwind differencing is necessary when the absolute value of the mesh 
Reynolds number is greater than 2, because the scheme then loses its diagonal dominance and is 
subject to numerical instabilities. 

The higher-order upwind differencing scheme2’ is second-order-accurate and does not lead to 
‘wiggles’ (spatial oscillations), and can be described as follows: 

u>o,  
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The QUICK schemez1 is third-order-accurate and exhibits only bounded wiggles. It is 
described as follows: 

u-=-(-24i-1- a4 u 
ax 6Ax 

2.5. Numerical solution procedure 

The HARWELL-FLOW3D computer program” is used for numerical solution of the 
governing partial differential equations. It uses a finite difference (volume) method on a general 
non-orthogonal body-fitted grid and has a polyalgorithmic structure whereby options are 
available for the user to select from different discretization schemes and solution algorithms. The 
Rhie-Chow algorithmz3 extended to three dimensionsz4 is used to overcome the problem of 
chequerboard oscillations usually associated with the use of non-staggered grids. In the present 
calculations the SIMPLEC algorithmz5 is used for pressure and velocity decoupling. More 
details of the computer programme can be found in References 22, 24, 26 and 27. 

3. RESULTS AND DISCUSSION 

The flow field was calculated over a wide range of Reynolds number for various combinations of 
duct geometry, grid size and discretization scheme. In view of the sheer volume of output from 
these calculations, our attention is restricted to studying the effect of various parameters on the 
secondary flow vectors at the outlet (fully developed flow) in the case of the coiled tube and at the 
bend exit in the case of the two bends. Also, the emphasis is on the qualitative nature of the flow 
field and any quantitative aspects are neglected. 

First we examine typical results from a series of calculations in which the Reynolds number 
of the flow increases but other parameters (e.g. grid, numerical method, etc.) remain the same. 
Figure 1 shows the secondary flow pattern at the exit of the bend (with a diameter ratio of 20) at 
Reynolds numbers of 200, 400, 580, 1200, 1400, 1600, 1800 and 2000. The grid size in these 
calculations was 32 x 20 x 20 and the higher-order upwind differencing scheme was used. It is seen 
that at a Reynolds number of 200 the secondary flow consists of a pair of symmetric vortices. This 
structure is retained at Re = 400, though the flow pattern near the outer wall begins to change. At 
Re = 580 an additional pair of symmetric vortices is created near the outer wall. The four-vortex 
symmetric structure is maintained up to R e x  1200, where it begins to become asymmetric. It is 
clearly asymmetric at Re= 1400; one of the two smaller vortices appears to be moving towards 
the corner and the other appears to get bigger. This process is completed by R e x  1600, where 
only three vortices are evident. As Re increases further to 1800, this vortex is also entrained by one 
of the two main vortices and a two-vortex pattern is established at R e z 2 0 0 0 .  

This is the basic flow pattern as the Reynolds number increases. In the rest of the section the 
main interest is on how it changes as other parameters of the solution (and not necessarily of the 
flow field itself!) such as the curvature ratio and the grid size are changed. 

3.1. Transition from two- to four-vortex structure 

The Reynolds number or Dean number at which the two-vortex structure changes to a four- 
vortex one can be determined by increasing Re in small steps around the point of transition. In 
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Figure 1. Secondary flow pattern at exit from U-bend with diameter ratio of 20 at Reynolds numbers of (a) 200, (b) 400, 
(c) 580, (d) 1200, (e) 1400, (I) 1600, (9) 1800 and (h) 2000. The grid size is 32 x 20 x 20 and the differencing scheme the higher 

upwind differencing (HUW) 

the case of the long-radius bend this was done by calculating the flow field at Reynolds numbers 
of 400, 450, 475 and 500 using HUW as the differencing scheme. The flow pattern at the exit 
showed a two-vortex structure for Re = 400,450 and 475 but a four-cell structure at Re = 500; thus 
the transition Reynolds number is between 475 and 500 for this set of conditions. Figure 2 shows 
the secondary flow pattern calculated at Re = 475 using HUW and QUICK on a finer grid. A 
clear four-cell structure is evident in the flow field calculated using QUICK, which is more 
accurate than HUW. Also, increasing the grid size from 20 x 20 to 30 x 30 in the duct cross- 
section does not seem to have a significant effect on the critical Re in this case. Thus the transition 
can be supposed to occur at Re = 475. 

The critical transition for the short-radius bend (diameter ratio of 10) can be obtained from 
Figure 3, which shows the secondary flow at Reynolds numbers of 350,450 and 580 calculated on 
a 20 x 20 grid using the QUICK differencing scheme. It is seen that at Re= 350 the solution using 
QUICK is on the verge of transition to a four-vortex structure, and the transition Reynolds 
number can be set to 350 for this bend. The sensitivity of the solution to the differencing scheme 
can be gauged from the flow structures shown in Figure 4, which are calculated at the same Re 
but using the less accurate HUW and hybrid differencing schemes. The HUW solution shows a 
four-cell structure at Re = 450 but not at Re = 350, while the hybrid solution retains a two-vortex 
structure even at Re = 580. A calculation at Re = lo00 shows it to have a four-cell structure. Thus 
we find that the transition Reynolds number for a given curved duct depends very much on the 
differencing scheme used. This is especially true of the hybrid differencing scheme; HUW and 
QUICK seem to give fairly consistent results. 

The calculation of the fully developed flow in the coil should take less than the developing flow 
calculations in the bends, which need a three-dimensional grid. It was therefore hoped that this 
would allow a systematic study of the effect of the grid size and the differencing scheme in a wider 
range. However, the solution was found to be extremely difficult to converge near the transition 
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a(i)Re = 400, HUW a(ii)Re = 475, HCTW 

I .''.'.> I 

I . .  

(b) Re = 475, QUICK 

Figure 2. Secondary flow pattern at Re=475 at bend exit calculated on a 38 x 30 x 30 grid using (a) HUW and 
(b) QUICK differencing schemes 

point as explained below; this limited the range of parameters investigated, but the results were no 
less interesting. 

The coarse grid (20 x 20) solution using all three differencing schemes (hybrid, HUW and 
QUICK) had a two-vortex symmetric structure at a Reynolds number of 600. Both the hybrid 
and HUW solutions were of the symmetric, two-vortex type at Re = 700. However, the QUICK 
solution did not converge easily and was found to be oscillating. Although it appeared to have a 
four-vortex structure at the end of 800 iterations, it gradually tended towards a two-vortex 
solution at the end of 2000 iterations. At this point the solution was still oscillating, but only with 
a relatively small amplitude. The solution at various points during an oscillation showed only 
slightly asymmetric two-cell structure; thus it was concluded that the solution would finally 
converge to a two-vortex solution. However, when the Reynolds number was increased to 800, 
the solution oscillated between four-vortex solutions only. Thus the transition between two- and 
four-vortex solutions occurs at a Reynolds number of about 800 for this coil. 

In order to determine the effect of numerical accuracy, the calculations were repeated on finer 
grids and also using the HUW and hybrid schemes. At Re = 800 the HUW solution on a coarse 
grid had a (non-converged) four-cell structure after 800 iterations but converged to a two-cell 
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Figure 3. Secondary flow patterns at exit of short-radius bend (diameter ratio of 10) calculated using QUICK scheme at 
Reynolds numbers of (a) 350, (b) 450 and (c) 580 

structure at the end of some 2000 iterations. The solutions did not change appreciably when the 
grid size was increased to 30 x 30. However, at a grid size of 40 x 40 the solution using HUW 
appeared to oscillate roughly between two extrema. The solutions at the two extrema and at the 
approximate midpoint of the oscillation are shown in Figure 5. It can be seen that the solutions 
oscillate between a four- and a two-cell structure. These oscillations were not damped even after 
2000 iterations. 

The set of calculations using the less accurate hybrid differencing scheme also followed the 
same trend. On the coarse grid the solution converged to a two-cell structure in 800 iterations. 
However, on the finer 40 x 40 grid it initially acquired a four-vortex structure which decayed to a 
two-vortex one after 3000 iterations. The solution at various stages in this process is shown in 
Figure 6. 

We clearly see the effect of numerical accuracy on the solution. The solution using the QUICK 
scheme, which is third-order-accurate, starts oscillating at a Reynolds number of 700 and acquires 
a four-cell structure at Re=800 on a coarse grid. At this stage the HUW solution, which is 
second-order-accurate, shows signs of oscillation but converges to a two-cell pattern. When the 
grid is refined, the HUW solution now starts to oscillate between a four- and a two-cell structure. 
For the same Reynolds number the hybrid scheme solution gives a two-vortex structure within 
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a(i) Re=350 a(ii) Re=450 

b(i) Re=450 

a ( i i i )  Re=580 

b(ii) Re-580 

Figure 4. Same as Figure 3 but using (a) HUW and (b) hybrid schemes 

800 iterations on a coarse 20 x 20 grid but shows some tendency towards a four-cell structure on a 
finer 40 x 40 grid, and would probably give a four-vortex structure if the grid size was further 
increased. Thus the overall numerical accuracy is important; an effectively first-order-accurate 
scheme such as the hybrid scheme would require a very fine grid to calculate the transition point 
accurately. 

It still remains to explain why no Converged four-cell structure was ever obtained in the 
calculations of the flow in this coil. There are two plausible reasons for this. The first is that the 
solutions would converge if they were carried further than 2500 iterations. A case in point is the 
hybrid solution on a 40 x 40 grid, which eventually converged (to a two-vortex structure) after 
about 3000 iterations (see Figure 6). The second and perhaps the more probable explanation is 
that the flow has multiple solutions after the bifurcation. WintersI2 recently studied the 
bifurcation characteristics of the same flow (i.e. fully developed flow in a square coil of diameter 
ratio of 50) by solving an extended system of equations in a finite element approximation. He 
found that several solutions, including two- and four-cell and symmetric and (weakly) asymmetric 
solutions, were possible at a Dean number of around 100. The various solutions between which 
the solution oscillates could represent the solutions along different branches of the bifurcation 
tree. Lack of computing resources and time did not permit further investigation of these solutions; 
however, the point is made that the solution (obtained using finite difference methods) can be 
grid- and differencing-scheme-dependent. 

The above calculations show that the critical Reynolds number for this coil is about 800. Since 
the diameter ratio is 50, the critical Dean number is 113. For the long-radius bend case the critical 
Re was 475 and the curvature ratio 20, giving a critical Dean number of 106. For the short-radius 
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A... . 

( C )  

Figure 5. Fully developed secondary flow calculated in coiled tube of square cross-section and diameter ratio of 50 on a 
4 0 x 4 0  grid using HUW scheme: (a), (b) at the two extremes of the oscillation; (c)at roughly the midpoint of the 

oscillation. The Reynolds number of the flow is 800 

bend of diameter ratio of 10 the critical Re was 350, which corresponds to a Dean number of 110. 
Thus for all three cases investigated here the critical Dean number at which a four-cell structure 
appears in curved ducts of square cross-section is about 110. This is consistent with the 
experimental results of Joseph et a1.* and Cheng and Yuen16 and with the numerical results of 
Masliyah' and Dennis and Ng,' but is in conflict with the results of Cheng et aL5 and Ghia and 
Sokhey6 and in rough agreement with the result of Ghia et al." 

3.2. Appearance of an asymmetric $ow pattern 

As shown in Figure 1, the symmetric four-vortex pattern may degenerate into an asymmetric 
pattern as the Reynolds number is further increased. These calculations were done using the 
HUW differencing scheme. When the hybrid differencing scheme was used, no asymmetric 
solutions were found even at a Reynolds number of 2100. The secondary flow field consisted of 
two pairs of symmetric vortices. However, the transition to an asymmetric flow pattern occurred 
when the more accurate QUICK differencing scheme was used. Here the transition occurred at a 
lower Reynolds number, which may indicate its sensitivity to numerical accuracy. The flow (see 
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........ . . _-- . - _ _  ........ 

( C )  ( a )  

Figure 6. Secondary flow in coil calculated using hybrid scheme after (a) 800, (b) 1500, (c) 2200 and (d) 2900 iterations 

Figure 7) is symmetric at Re = 1000 but becomes asymmetric at Re= 1100. It shows a nearly 
three-vortex structure at Re = 1150 and subsequently reverts to a two-vortex-type structure. 
Converged solutions could not obtained for Reynolds numbers higher than 1300 in this case. 

We thus see a strong dependence of the transition to asymmetric flow pattern on the method 
used. With hybrid differencing no transition was obtained; with HUW the transition occurred at 
a Reynolds number of about 1300, whereas it was obtained at Re = 1100 when the more accurate 
QUICK differencing was used. The sensitivity of these solutions to the initial guess solution was 
investigated systematically by using a four-vortex, a two-vortex and an asymmetric solution as 
the initial guess for many cases. In all cases the final converged solution, if one was obtained at all, 
was found to be insensitive to the initial guess. 

A similar pattern was found in the calculations for the short-radius U-bend (diameter ratio of 
lo), though only a few cases have been investigated. The results obtained using the QUICK 
scheme are shown in Figure 8. Here the solution consists of a six-vortex symmetric pattern at a 
Reynolds number 1000! This is brought about by the breaking up of the pair of smaller vortices 
near the outer wall. As the Reynolds number is increased, the symmetry of the flow is broken; at 
Re = 1300 we see a five-vortex asymmetric structure and at Re = 1500 a four-vortex one. Note that 



BIFURCATION IN CURVED DUCT LAMINAR FLOW 263 

Figure 7. Secondary flow in long-radius U-bend calculated using QUICK scheme at Reynolds numbers of (a) 1O00, 
(b) 1100,  (c) 1150 and (d) 1200 

symmetric multiple-vortex solutions, including one consisting of eight vortices, have been 
obtained in a circular tube by Yang and Ke1ler;'O however, these were obtained by imposing a 
symmetry plane along the horizontal axis. 

Thus it appears that an asymmetric secondary flow pattern and multiple-vortex solutions are 
possible in the laminar flow through curved ducts, as suggested by Winters12 and Goering et 
Winters actually obtained a weakly asymmetric flow pattern in his numerical calculations of the 
developed flow in a coil. As far as experimental results are concerned, Hille et a l l 7  obtained an 
asymmetric secondary flow pattern. One of the additional pair of vortices was smaller than the 
other, and both appeared to be heading towards one of the corners. This is consistent with the 
scenario presented in Figure 1, which recurs in various forms as the parameters are changed. At 
this stage it is perhaps worth mentioning that Ohba et a1." found velocity fluctuations in laminar 
flow through a U-bend of square cross-section. These fluctuations (see Figure 9) were present at 
Re = 670 and 1340 but not at Re = 167 or 1500. Inasmuch as the present calculations for this bend 
geometry show a transition to an asymmetric flow structure at R e x  lo00 (see Figure 7), these 
fluctuations may be associated with the bifurcation phenomenon. However, the evidence is not 
conclusive, since our calculations were time-independent and do not indicate the temporal 
stability of the solution. 
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( C )  

Figure 8. Secondary flow in short-radius U-bend calculated using QUICK scheme at Reynolds numbers of (a) 1O00, 
(b) 1300 and (c) 1500 

There are two reasons why the asymmetric patterns have not been reported in earlier studies of 
this flow. The first is the numerical accuracy, as demonstrated above: the hybrid solution does not 
show an asymmetric structure whereas the QUICK and HUW solutions do. Another possibility 
is the imposition of a symmetry boundary condition at the midplane, as was done for example by 
Joseph et ul.’ Cheng et uL5 and Nandakumar and Masliyah.’ In order to investigate this effect, 
the calculations in the long-radius U-bend (diameter ratio of 20) were repeated with a symmetry 
boundary condition at the midplane. In this case only the flow through half the duct was 
calculated. The results show that the transition Reynolds number from two- to four-vortex 
symmetric flow is not affected by the imposition of a symmetry boundary condition. However, the 
half-duct simulation gave a symmetric four-vortex solution even if the solution from the full duct 
simulation showed a strongly asymmetric secondary flow, e.g. as in Figure 1 at Re= 1600. 
Obviously, the imposition of symmetry in such cases is incorrect. However, the full duct 
simulation in itself does not necessarily give asymmetric solutions. Ghia et al.” solved for the 
fully developed flow in a square coil of diameter ratio of 100 without the symmetry boundary 
condition, with grid refinement and a second-order-accurate differencing scheme. They found 
that the four-vortex symmetric solution persisted up to a Dean number of at least 900; this should 
be compared with the results of Winters,” who obtained multiple (including asymmetric) 
solutions for Dean numbers as low as 80-140 in a coil of diameter ratio of 50, and with those 
of Cheng et al.,’ who found that a two-vortex structure was re-established after a Dean number 
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Figure 9. Velocity fluctuations obtained experimentally by Ohba et ~ 1 ' ~  in long-radius bend (a) probability density 
function; (b) velocity as a function of time; (c) autospectral density function 

of 520. At least some of the differences cannot be readily explained within the framework of the 
present numerical experiments. 

4. CONCLUSIONS 

The nature of the bifurcation solution in laminar flow in curved ducts of square cross-section 
has been investigated numerically using the HARWELL-FLOW3D computer program. The 
solution is found to be sensitive to the differencing schemes and grid refinement. In all three 
curved duct geometries investigated here the transition from two- to four-vortex structure 
occurred at a Dean number of about 110. At higher Dean (Reynolds) numbers the four-cell 
structure reverted to a two-cell structure through a route involving asymmetric flow patterns. 
This route appears to be very sensitive to the grid, duct geometry and numerical methods of 
solution. The results from this study are in agreement, at least in parts, with recent experi- 
mental,' '-19 the~re t ica l '~  and numerical'Z results. It is suggested that the sensitivity of the 
solution to numerical accuracy, especially to the differencing scheme, and to the imposition of a 
symmetry boundary condition at the midplane in some of the earlier studies may explain some of 
the differences among the various numerical results. 
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